- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Schrick, Kathrin (2)
-
Ahmad, Bilal (1)
-
Colter, Madeline (1)
-
Hincha, Dirk K (1)
-
Hu, Xueyun (1)
-
Hwang, Caroline (1)
-
Khosla, Aashima (1)
-
Knox‐Brown, Patrick (1)
-
Li, Maoyin (1)
-
Lowe, Kaleb A. (1)
-
Mathews, Graham L (1)
-
Mukherjee, Thiya (1)
-
Panagakis, Ashley A (1)
-
Peery, Sophie T (1)
-
Porras, Hollie (1)
-
Roach, Charles (1)
-
Roth, Mary R. (1)
-
Samarakoon, Thilani (1)
-
Shah, Jyoti (1)
-
Shiva, Sunitha (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Plant homeodomain leucine zipper IV (HD‐Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)‐related lipid transfer (START) domain. While the START domain is required for TF activity, its presumed role as a lipid sensor is not clear.Here we used tandem affinity purification fromArabidopsiscell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative member that controls epidermal differentiation, recruits lysophosphatidylcholines (LysoPCs) in a START‐dependent manner. Microscale thermophoresis assays confirmed that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding.We additionally found that PDF2 acts as a transcriptional regulator of phospholipid‐ and phosphate (Pi) starvation‐related genes and binds to a palindromic octamer with consensus to a Pi response element. Phospholipid homeostasis and elongation growth were altered inpdf2mutants according to Pi availability. Cycloheximide chase experiments revealed a role for START in maintaining protein levels, and Pi starvation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity.We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Our data provide insights toward understanding how the lipid metabolome integrates Pi availability with gene expression.more » « less
-
Shiva, Sunitha; Samarakoon, Thilani; Lowe, Kaleb A.; Roach, Charles; Vu, Hieu Sy; Colter, Madeline; Porras, Hollie; Hwang, Caroline; Roth, Mary R.; Tamura, Pamela; et al (, Plants)null (Ed.)In response to elevated temperatures, plants alter the activities of enzymes that affect lipid composition. While it has long been known that plant leaf membrane lipids become less unsaturated in response to heat, other changes, including polygalactosylation of galactolipids, head group acylation of galactolipids, increases in phosphatidic acid and triacylglycerols, and formation of sterol glucosides and acyl sterol glucosides, have been observed more recently. In this work, by measuring lipid levels with mass spectrometry, we confirm the previously observed changes in Arabidopsis thaliana leaf lipids under three heat stress regimens. Additionally, in response to heat, increased oxidation of the fatty acyl chains of leaf galactolipids, sulfoquinovosyldiacylglycerols, and phosphatidylglycerols, and incorporation of oxidized acyl chains into acylated monogalactosyldiacylglycerols are shown. We also observed increased levels of digalactosylmonoacylglycerols and monogalactosylmonoacylglycerols. The hypothesis that a defect in sterol glycosylation would adversely affect regrowth of plants after a severe heat stress regimen was tested, but differences between wild-type and sterol glycosylation-defective plants were not detected.more » « less
An official website of the United States government
